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18, 00184 Roma, Italy

2Dipartimento di Fisica e INFM, Università di Roma ‘Tor Vergata’, Via della Ricerca
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The modification of the turbulent cascade by polymeric additives is addressed by
direct numerical simulations of homogeneous isotropic turbulence of a FENE-P
fluid. According to the appropriate form of the Kármán–Howarth equation, two
kinds of energy fluxes exist, namely the classical transfer term and the coupling with
the polymers. Depending on the Deborah number, the response of the flow may
result either in a pure damping or in the depletion of the small scales accompanied by
increased fluctuations at large scale. The latter behaviour corresponds to an overall
reduction of the dissipation rate with respect to an equivalent Newtonian flow with
identical fluctuation intensity. The relevance of the position of the crossover scale
between the two components of the energy flux with respect to the Taylor microscale
of the system is discussed.

1. Introduction
The addition of a tiny amount of polymer in a turbulent flow produces a substantial

decrease of drag and this phenomenon is well documented in experiments (Virk
1975). However, despite extensive experimental and theoretical efforts, the drag
reduction mechanism (DR) is still under debate (see Sreenivasan & White 2000).
Recently, numerical simulations have become an important tool to understand this
intriguing phenomenon (Sureshkumar, Beris & Handler 1997; Min, Yoo & Choi 2001;
De Angelis, Casciola & Piva 2002a; Dimitropoulos et al. 2005).

One of the basic questions concerning DR is the effect of polymers on fluxes of
energy across scales and on spatial transfer of momentum in a turbulent flow. In
boundary layers the two processes occur simultaneously: in the log-region momentum
is transferred towards the wall via Reynolds stresses while a cascade of energy through
the scales takes place to dissipate turbulent energy. In this respect, the polymers should
alter both the cascade and the momentum transfer in order to give rise to an increased
buffer region which produces the increased throughput corresponding to DR (Lumley
1973).

In homogeneous and isotropic turbulence there is no mean shear, hence the
polymers cannot change the momentum fluxes in the system. However, they can
change the energy flux from large to small scales in a way which will be described in
the present paper.

Though this fundamental issue is easily addressed numerically, important aspects
of the problem were highlighted by considering decaying grid-generated turbulence.
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For instance, McComb, Allan & Greated (1977) discuss longitudinal spectra which
unequivocally show a significant alteration of the kinetic energy distribution among
scales. This suggests a strong modification of the nature of the cascade, which
apparently leads to a substantial depletion of the energy content of the small scales.
In a similar context, van Doorn, White & Sreenivasan (1999) clearly show how the
decay rate of grid-generated turbulence is reduced by the polymers. The presence of
polymers gives rise to a dissipation rate smaller than expected for a corresponding
Newtonian flow. The same phenomenon, observed in the context of shell models (see
Benzi et al. 2003) and accompanied by some increase of fluctuation amplitude at
large scale, has been interpreted as a form of generalized DR. The possibility offered
by shell models of investigating a wide range of parameters led to the conjecture that
increased fluctuations may occur when the Taylor scale is smaller than the Lumley
scale of the system (Lumley 1973).

We present numerical simulations of viscoelastic homogeneous and isotropic turbu-
lence aimed at understanding how the polymer stretching changes the energy flux and
at which characteristic scales these changes are observed (see Casciola et al. 2003 for a
related approach in Newtonian shear-dominated turbulence). The polymers are descri-
bed by the FENE-P model which, for turbulent channel flows, reproduces the features
observed in laboratory experiments. After a preliminary study two typical cases are
discussed to address the behaviour of the system when changing the Lumley scale.

2. The evolution equations for dilute polymer solutions
The momentum balance for a dilute solution of long chain polymers is

∂ui

∂t
+ uk

∂ui

∂xk

= − ∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+
∂Tij

∂xj

+ fi, (2.1)

where ui is the solenoidal velocity field, fi is the external forcing, p is the pressure
normalized by the density and ν is the solvent kinematic viscosity, and the extra stress
Tij due to the polymers has the following constitutive relation:

Tij = (νP/τ )
[
P (Rkk; ρm, ρ0)Rij/ρ

2
0 − δij

]
. (2.2)

Here νP is a constant of the order of a fraction of ν, depending on polymer
concentration, ρ0 and ρm are equilibrium and maximum allowed length of the chains
respectively. The conformation tensor, Rij , statistically characterizes the behaviour of
the polymers and the Peterlin function, P = (ρ2

m − ρ2
0 )/(ρ

2
m − Rkk), is a dimensionless

nonlinear spring coefficient. In the equation for Rij ,
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∂2Rij
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, (2.3)

τ is the largest relaxation time of the chains and the Laplacian represents the
diffusion of polymers, usually negligible. Here, it has the role of an artificial diffusion
(see Sureshkumar et al. 1997) needed to stabilize the high-wavenumber instability.
The system (2.1)–(2.3), completed with the continuity equation, is the FENE-P model
(Finite Extensibility Nonlinear Elastic-Peterlin) for dilute polymers, see e.g. Bird et al.
(1987).

The extra stress does work on the velocity according to the balance equation

D(u2/2)

Dt
=

∂(pδij + 2νeij )ui

∂xj

+
∂(Tijui)

∂xj

− εN − S + fiui, (2.4)
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where εN =2νeij eij is the Newtonian component of the dissipation, with eij the
deformation-velocity tensor. The stress power S = Tij ∂ui/∂xj represents energy per
unit time that the chains can either dissipate or store as free energy a according to
the balance

Da

Dt
= S − εP, (2.5)

where the free energy of the polymer ensemble is

a = −1

2

νP

τ

{(
ρ2

max/ρ
2
0 − 1

)
log

[(
ρ2

max − Rkk

)/(
ρ2

max − ρ2
0

)]
+ 1/3 log

(
det R/ρ2

0

)}

and εP = (νp/2τ 2)f [( f R/ρ2
0 )kk +( f R/ρ2

0 )
−1
kk − 6] is the positive definite polymeric

dissipation. In terms of micromodelling, the polymeric dissipation described by the
relaxation term – the third term on the right-hand side of (2.3) – is due to the Stokes
friction of the solvent on the beads of the dumbbells taken to model the individual
polymeric chains. For the total free energy in the system, E = u2/2 + a, we have

DE

Dt
= fiui − εT +

∂Jk

∂xk

(2.6)

where Ji is the corresponding spatial flux and εT = εN + εP. The term S, as a con-
servative exchange of energy between microstructure and fluid, drops out from (2.6).

3. Global features of the flow
3.1. Forcing mechanism and dimensionless parameters

Equations (2.1), (2.3) have been integrated in a triperiodic domain of length lx = 2π
using a Fourier spectral method and a third-order Runge–Kutta time solver with
the nonlinear terms de-aliased by the 3/2 rule. A random forcing is applied to the
first shell of wave vectors, with amplitude f̂ 0 = 0.2, constant in time and uniformly
distributed phases and directions. The phase is subject to the condition of positive
energy injection. As a consequence, the input power may change with the parameters
of the flow and the results have to be normalized before comparison. The procedure
yields a statistically stationary isotropic field where input power and total dissipation
balance. The simulation parameters include the Reynolds number Re = (l3x f̂0)

(1/2)/νT,

where U0 = (lx f̂ 0)
(1/2) is the external velocity scale and νT = ν + νP, the Deborah

number De = τ (f̂ 0/lx)
1/2 where T = (lx/f̂ 0)

(1/2) is the characteristic time, α =(ρm/ρ0)
2

and the viscosity ratio, ηP = νP/ν. In all the simulations Re= 960, α =1000, ηP = 0.1.
After reaching a statistically steady state, each run has been continued up to time
Tmax = 550T � 3000 to collect the amount of data required for well-converged
statistics. Each simulation has been repeated twice with the number of nodes increased
from 643 to 1283 (963 and 1923, due to de-aliasing). The finer grid for the polymer
case requires a computational effort comparable with a standard 5123 Newtonian
simulation, due to the increase of number of variables, of nonlinear terms for each
equation and of integration time.

We discuss two viscoelastic cases at De =0.18 and 0.54. Typical realizations of the
field are shown in figure 1, where, apparently, viscoelasticity leads to structures with
increased dimensions. The coherence factors of the velocity, i.e. 〈uiuj 〉/(〈u2

i 〉〈u2
j 〉)1/2

with i �= j , always below 2%, imply a substantial isotropy of the simulations.
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Figure 1. Vortical structures (grey) for (a) the Newtonian and (b) the viscoelastic case at
De= 0.54. In (b) an isosurface of 30% of the maximum value of the polymer dissipation εp is
also plotted (white).
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Figure 2. (a) A small portion of the time history of the spatial average of the kinetic energy
Kc . Dotted, dashed and solid lines correspond to De= 0, De= 0.18, and De= 0.54, respectively.
(b) History of the spatial average of Ω in the same time interval, same line styles.

De urms ε̄T = 〈f · u〉 D ε̄N ε̄P λ η r∗
e �p 〈Rkk〉/ρ2

0 Nmodes

0 0.806 0.156 1.87 0.156 – 0.68 0.040 – – – 643

0.18 0.832 0.174 1.90 0.072 0.102 0.98 0.045 1.23 0.603 154 643

0.54 0.989 0.238 1.55 0.070 0.164 1.18 0.045 2.20 0.973 520 643

0.54 0.969 0.232 1.60 0.074 0.158 1.14 0.045 2.20 0.923 532 1283

Table 1. Summary of the principal global quantities. For the definitions of r∗
e and �p see text

and equations (4.5) and (4.7), respectively.

3.2. Kinetic energy and large-scale fluctuations

The principal global quantities are reported in table 1, where the most relevant feature
is the increase of the kinetic energy Kc = (3/2)u2

rms with De. This effect, illustrated
in figure 2(a), indicates that the polymers can alter the energy-containing range of
the system. Before going into details, however, we need to define the best way to
normalize the fluctuation intensity and to compare the different cases.

It is well known that in Newtonian homogeneous and isotropic turbulence at high
Reynolds number the rate of energy dissipation ε is independent of the Reynolds
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Figure 3. (a): 〈δV 2〉/(ε̄Tlx)
2/3 vs. r/ lx for De= 0 (Newtonian) (dashed line), De= 0.18 (dotted

line) and De= 0.54 (solid line and open circles, 643 and 1283 simulation, respectively).

(b) Dimensionless eddy turnover time r/〈δV 2〉1/2ε
1/3
T /�

2/3
x for the Newtonian simulation (circles)

and effective dimensionless relaxation time τRε
1/3
T /�

2/3
x for De= 0.18 and 0.54, dashed and solid

lines respectively. Crossing of lines and symbols defines the effective Lumley scale, (4.5).

number. For statistically stationary conditions, ε =DNu3
rms/L where L is the charac-

teristic scale of the external forcing, i.e. in our case L = lx , and DN is a dimensionless
number, known to be independent of the Reynolds number in Newtonian turbulence,
see Sreenivasan (1984). Note that ε is also the rate of energy input in the turbulent
flow, i.e. ε = 〈f · u〉. Therefore, the ratio εlx/u

3
rms represents the energy input ε needed

in order to produce turbulent fluctuations of intensity u2
rms . Extending the results to

viscoelastic turbulence, the dimensionless dissipation

DP ≡ 〈f · u〉lx/u3
rms (3.1)

is the proper parameter to compare the different cases. When DP < DN the overall
kinetic energy in the presence of the polymers increases with respect to the Newtonian
case. We find (see table 1) that, for De =0.54, DP /DN = 0.85. The whole picture
suggests the alteration of the energy-containing scales of the flow, a most unexpected
result for homogeneous isotropic turbulence.

3.3. Enstrophy and small-scale behaviour

Less unexpectedly, the small scales of the system are also strongly affected by polymers,
as shown in figure 2(b). However, the enstrophy Ω , as a small-scale quantity, does not
exhibit the large cycles which appear in the turbulent kinetic energy. The reduction
of the enstrophy with increasing De, i.e. the decrease of the Newtonian dissipation,
ε̄N = 2ν〈Ω〉, is apparent. On the contrary, the total dissipation, ε̄T, increases, i.e. the
flow extracts more power from the constant-amplitude external forcing, as mentioned
in § 3.1. The fluctuation amplitude also increases, and in certain cases exceeds the
input power to obtain the reduction of the dimensionless dissipation rate (3.1).

As shown in table 1, a larger and larger portion of the input power is dissipated
by the polymers and, for De = 0.54, ε̄P is 70% of the total. Almost all the energy is
contained in the macroscopic kinetic field while most of the dissipation occurs via
the polymers. The reduction of ε̄N leads to the increase of the Kolmogorov length
η =(ν3/ε̄N)1/4. The Taylor microscale λ= (5〈Kc〉/〈Ω〉)1/2 also increases.

Figure 3(a) shows the second-order structure function S2 = 〈δV 2〉 = 〈δViδVi〉, where
δVi = ui(x

′
s) – ui(xs) and x ′

s – xs = rs . In both viscoelastic simulations the polymers affect
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the fluctuation intensity at all scales. The detailed picture is however different. For
De= 0.18 the viscoelastic effect amounts to the damping of the fluctuation level and
the net result is increased dissipation. At De= 0.54, the behaviour is more selective.
The depletion is confined to the small scales and the fluctuations increase at large
scales. The second behaviour is associated with the reduction of DP , which, on the
contrary, slightly increases in the first case.

4. Scale by scale budget
4.1. The Kármán–Howarth equation

In our system the external forcing acts only on the macroscopic field, while both
macroscopic flow and the microstructure contribute to the dissipation. The extra
stress captures mechanical energy to feed the fluctuations of the microstructure and
the associated dissipation. This process affects the flow at all scales.

In order to clarify this alteration and the role of the Deborah number, we address
the scale by scale budget of the velocity fluctuations. Starting from the equation for
the correlation tensor, Ci,j = 〈ui u

′
j 〉 where u′

i = ui(x
′
i) and x ′

i − xi = ri , we obtain for a
statistically stationary, solenoidal velocity field the Kármán–Howarth equation for
the increments, δVi = ui(x

′
r ) − ui(xr ), δV 2 = δViδVi , as

∂

∂rk

〈δV 2δVk + 2T ∗
kiδVi〉 = −4〈fiui〉 + 2〈δViδfi〉 + 2ν

∂2

∂rk∂rk

〈δV 2〉, (4.1)

with T ∗
ki = T ′

ki + Tki . After integrating over a ball Br of radius r , considering that
〈fiui〉 = ε̄T , it follows that

1

4πr2

∮
∂Br

〈δV 2δVk + 2T ∗
kiδVi〉nk dSr

= −(4/3)ε̄T r +
ν

2πr2

d

dr

∮
∂Br

〈δV 2〉 dSr +
1

2πr2

∫
Br

〈δViδfi〉 dVr, (4.2)

where the required manipulations do not make use of isotropy but rely heavily on
homogeneity (see e.g. Casciola et al. 2003 for a similar approach).

The Kármán–Howarth equation (4.2) highlights the main difference between
Newtonian and viscoelastic turbulence. For either case, where the viscosity and
the correlation 〈δViδfi〉 are negligible, the energy flux up to scale r equals the total
dissipation. For Newtonian fluids, all the dissipation is provided by the viscosity and
the flux is only due to the classical nonlinearity associated with the advection. For
viscoelastic fluids, an additional dissipative process takes place in the polymers, and
the flux presents a new component which corresponds to the energy intercepted by
the microstructure.

4.2. The Yaglom equation for the free energy

For the scale by scale budget we also need an equation for the microstructure.
Let us denote by ψ = S − εp the excess power, i.e. the power transferred to the
polymers in excess of dissipation, which gives the rate of energy storage in the
polymers. From (2.5) we can derive the equation for the correlation 〈aa′〉. Since
〈aψ ′ + a′ψ〉 = 2〈aψ〉 − 〈δaδψ〉 and for a stationary state, 〈aψ〉 = 0, it can be recast
into the form ∂/∂rk〈δVkδa

2〉 =2〈δaδψ〉. After introducing the notation

ΨS =
2

4πr2

∫
Br

〈δaδS〉 dVr, ΨεP
=

2

4πr2

∫
Br

〈δaδεP〉 dVr, (4.3)
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integration over the sphere of radius r yields

1

4πr2

∮
∂Br

〈δa2δVk〉nk dSr = ΨS − ΨεP
. (4.4)

Equation (4.4) is the Yaglom-like equation for polymers, which states that the flux of
free energy through the spatial scales, i.e. the left-hand side of (4.4), equals the integral
of the correlation between fluctuations of free energy, δa, and those of the excess of
power, δψ . In other words, if an imbalance between fluctuations of S and εP occurs,
it is likely to produce a flux of free energy through the scales of the microstructure.

4.3. Data analysis

As first suggested by Lumley (1973), a relevant scale for the system, r∗, is identified
as the scale below which the polymers begin to feel the turbulent fluctuations. It is
defined through a time criterion, i.e. comparing the scale-dependent eddy turnover time
with the relevant polymer relaxation time. The former is provided by the Newtonian
DNS, where as characteristic time for the scale r we assume r/〈δV 2〉1/2. The latter is
evaluated as τR = τ/〈P 〉, since the relaxation time always enters the FENE-P model in
its effective form τ/P . As shown in table 1, the polymers are considerably stretched by
the turbulence; typically their elongation, 〈Rkk〉1/2/ρ0, is 70% of the maximum allowed
for the case with De = 0.54. This implies that 1/P may differ considerably from one.
The time criterion, figure 3(b), defines the effective Lumley scale by the condition

r∗
e

/[〈
δV 2

N

〉
(r∗

e )
]1/2

= τR. (4.5)

As shown by table 1, for De= 0.18, r∗
e is comparable with the Taylor scale λ, i.e. the

polymers act at scales where the inertial dynamics is already affected by viscosity.
The overall effect is an increased global dissipation. On the contrary, at De = 0.54
r∗
e is substantially larger than λ and the polymers drain energy at inertial scales.

This seems to confirm the conjecture of Benzi et al. (2003) and explains the effect of
polymers on the energy-containing range.

To understand how the polymers modify the energy transfer across scales let us
address the Kármán–Howarth equation (4.2). Its left-hand side can be split into the
‘classical part’ due to the convective terms and the viscoelastic contribution given by

Φc =
1

4πr2

∮
∂Br

〈δV 2δVk〉nk dSr, Φp =
1

4πr2

∮
∂Br

〈T ∗
kiδVi〉nk dSr, (4.6)

respectively, see figure 4(a–c). At large scales, Φc contributes most of the energy flux.
At small scales the viscoelastic component takes over, entailing the reduction of Φc.
A crossover scale �p is clearly identified according to the equation

Φp(�p) = Φc(�p). (4.7)

The crossover moves towards smaller scales as De is decreased while at the same time
the effect of the polymers on the turbulence is reduced. By inspection of the figures,
we find that, at the present values of the Reynolds number, the polymers reaction is
dynamically relevant in all the available range of scales. Nonetheless, the large scales
are less and less affected for decreasing De. Since the Lumley scale delimits the range
where polymers feel the turbulence, �p is generally smaller than r∗

e . Both the scales
behave similarly with respect to changes in the Deborah number, see table 1.

Figure 4(d) addresses the Yaglom-like equation for the free energy a. The plots
correspond to the two terms of the right-hand side of (4.4), namely ΨS due to the
stress power and the term due to the dissipation. ΨS − Ψεp

is always very small,
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Figure 4. Scale by scale budget for (a) the Newtonian, and (b) viscoelastic case at De= 0.18,
and (c) De= 0.54. The solid line corresponds to (Φc + Φp)/(ε̄T lx), with Φp = 0 in (a). The
normalized right-hand side of (4.2) is shown by the symbols. The dashed and dotted lines in
(b) and (c) are Φp/(ε̄T lx) and Φc/(ε̄T lx), respectively. (d) Compares the two contributions to
the right-hand side of (4.4), namely ΨS (circles) and ΨεP

(lines) for De =0.18 and De= 0.54
(filled and open symbols respectively).

implying that the flux of a, described by the left-hand side of (4.4), is negligible. In
other words the fluctuations of stress power are almost immediately converted into
fluctuations of polymeric dissipation and no net flux of free energy occurs. This is
reasonable for the present cases. Well above r∗

e , the time scale of the fluctuations is
larger than the relaxation time, implying that the polymeric dissipation is faster than
convection. On the contrary, in the range below r∗

e , i.e. in the proximity of �p, one
should have in principle much faster convective scales. Here, however, the depletion
of the velocity fluctuation (see figure 3) explains why polymeric dissipation is still
dominant over free-energy transfer.

4.4. Grid sensitivity and artificial diffusion

Grid sensitivity tests have been performed, halving the value of the artificial diffusion
coefficient χ when doubling the resolution. The stringent criterion used to select
the value of the artificial diffusion coefficient – namely Sc = ν/χ =0.25 and 0.5, for
the coarse and the fine grid, respectively – is based on the requirement that the
conformation tensor should remain positive definite at every node of the grid for the
entire simulation.

The scale-by-scale balance, i.e. the Kármán–Howarth equation of § 4.1 and the
Yaglom-like equation of § 4.2, is virtually unaffected by grid refinement and the
related reduction of artificial diffusivity as shown by figure 5. The behaviour of 〈δV 2〉
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Figure 5. Grid sensitivity test at De =0.54. (a) Φc +Φp (solid lines), Φp (dashed) and Φc

(dotted). (b) ΨS . Thin and thick lines represent the 643 and 1283 simulations.

is also stable, see the solid line and the open circles in figure 3(a). Neither the cross-
over scale �p nor the effective Lumley length r∗

e changes appreciably by doubling the
resolution – from table 1 the variation of the first scale is about 3% while the other
is unchanged.

Physical considerations lead to the conclusion that the artificial diffusion term,
negligible at large scales, becomes effective below a certain scale �ad whose order of
magnitude can be estimated by comparison with the relaxation term,

�ad =
√

χτ/〈P 〉. (4.8)

Below �ad , the dynamics may be modified by the artificial term. This scale should be
kept well below the scale �p which characterizes the dynamics of the polymers. For
De =0.54, where �p = 0.97, �ad = 0.2 and 0.14, for the coarse and the fine grid, respec-
tively. We conclude that the discussed depletion of the classical inertial flux in favour
of the flux towards the microstructure is physically unaffected by the artificial diffusion.

5. Concluding remarks
Homogeneous isotropic conditions, as achieved here by DNS in triply periodic

domains, are ideal for clarifying the issue of the energy cascade in turbulent
flows with dilute polymers. According to the Kármán–Howarth equation (§ 4.1 and
De Angelis et al. 2002b), the polymers introduce a new component in the energy
flux. An alteration of the cascade may result either in a pure damping of the entire
range of scales, as for small Deborah numbers, or in the depletion of the small
scales accompanied by increased fluctuations at large scales, as for larger values of
De. The polymer-induced component of the flux, sub-dominant at large scales, takes
over at small scales. When the crossover scale is larger than the Taylor microscale,
the flux, from being inertia-dominated, becomes controlled by viscoelasticity. In these
conditions an increased turbulence intensity may be observed.

The additional flux of energy always drains energy from the macroscopic kinetic
field, i.e. the equivalent effective viscosity is positive at all scales, but the effect
is particularly significant near the crossover scale. Consistently, we find that, for the
conditions we have investigated, the polymers never give back a net amount of energy
to the velocity field. The Yaglom equation for the free energy confirms this conclusion
by showing that the scale by scale feeding of the microstructure is dissipated locally
in the space of scales.
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Finally, we expect the modifications to the cascade to be crucial also in the context of
wall bounded flows. For instance, in Sreenisvasan & White (2000), revisiting the theory
of Tabor & De Gennes (1986), it is argued that the viscoelastic forces at small scales
could obstruct the usual Richardson cascade. The cascade would then be terminated
at a scale larger than the Kolmogorov length. This could in principle explain the
general increase of scales, e.g. buffer layer thickness, which is crucial to understand
drag reduction. According to our results, more than obstructed, the classical cascade
is ‘intercepted’ by the polymeric component of the energy flux. In a different context,
a phenomenological model (L’vov et al. 2004) in terms of a space dependent effective
viscosity shows that drag reduction follows from the combined effect of Reynolds
stress depletion and viscoelastic dissipation. In the light of the present findings, the
required increase of effective viscosity must be physically understood as generated by
the alteration of the energy cascade we have described here.

In conclusion, the polymers deeply alter the cascade and, at finite Reynolds number,
for certain values of relaxation parameter the net dissipation rate is reduced for a
given fluctuation level. This point could be important in understanding the effects
of polymers on turbulence in general. Clearly the structure of turbulence near the
wall is substantially different from the isotropic case considered here. However we
are confident that the present approach can be straightforwardly generalized to deal
with the wall region.
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